Применим формулу синуса половинного угла слева и синуса двойного угла справа:
2sin²(x/2) = 2·2sin(x/2)cos(x/2)·sin(x/2)
2sin²(x/2) = 4sin²<span>(x/2)cos(x/2)
</span>2sin²(x/2) - 4sin²<span>(x/2)cos(x/2) = 0
</span>2sin²(x/2) ·(1 - 2<span>cos(x/2)) = 0
</span>sin²(x/2) = 0 или 1 - 2<span>cos(x/2) = 0
</span>x/2 = πn, n∈Z cos(x/2) = 1/2
x = 2πn, n∈Z x/2 = π/3 + 2πk, k∈Z или x/2 = - π/3 + 2πm, m∈Z
x = 2π/3 + 4πk, k∈Z x = - 2π/3 + 4πm, m∈Z<span>
</span> 2sin²(x/2) - 4sin²(x/2)cos(x/2) = 0
2sin²(x/2) - 2·2sin²<span>(x/2)cos(x/2) = 0
</span> _______ _______ это выносим
2sin²(x/2) · ( 1 - 2<span>cos(x/2)) = 0</span>
M(NaCl) = 250/100*8 = 20 грамм
m(воды) = 250 - 20 = 230 грамм
Пусть х - учащиеся первой школы, тогда 1500-х -учащиеся второй школы
Составим уравнение
1,1х+1,2(1500-х)=1720
1,1х+1800-1,2х=1720
1800-1720=1,2х-1,1х
80=0,1х
х=800 учащихся в первой школе
1500-800=700 учащихся во второй школе