1) диагональное сечение есть равнобедренная трапеция..т.е сечение проходит через вершины и диагонали оснований.(9√2 - 3√2)/2 = 3√2 (проекция боковой стороны трапеции на основание)из прямоугольного треугольника известен угол в 60 градусов..поэтомубоковая сторона будет равна 6√2 , так как катет лежащий напротив угла в 30 градусов равен половине гипотенузы, наша проекция как раз там и лежит))по теореме пифагора найдем высоту: h² = 72 - 18 = 54 = √54S = (a+b)*h/2 = 12√2 * √54 /2 = 36√3<span> </span>
Диагонали параллелограмма делятся точкой пересечения пополам.
Рассмотрим треугольник образованный стороной параллелограммаи половинами диагоналей.
Т.е. для нахождения стороны параллелограмма есть следующая формула
a=√(c²+b²-2c*b*cosα)
В данном случае c=d/2=12/2=6
b=D/2=20/2=10
a=√(6²+10²-2*6*10*cos 60)
a=√(36+100-120*cos 60)
a=√(136-120*1/2)=√76=2√19
b=√(6²+10²-2*6*10*cos 120)=√(136+120/2)=√196=14
Стороны 2√19 и 14
В параллелограмме противоположные углы равны. Обозначим больший угол за Х, а меньший за У, тогда:
Х-У=25 Х-У=25 Х-(180-Х)=25 2*Х=205 Х=102,5
2*Х+2*У=360 У=(360-2*Х)/2 У=180-Х У=180-Х У= 77,5
Углы равны: 102,5 и 77,5