Смотри .................................
a/b^2 + b/a^2 ≥ 1/a + 1/b
(a^3 + b^3)/a^2b^2 ≥ (a + b)/ab
(a^3 + b^3)/ab ≥ a + b
a^3 + b^3 ≥ ab*(a + b)
(a + b)*(a^2 - ab + b^2) ≥ ab*(a + b)
a^2 - ab + b^2 ≥ ab
a^2 - 2ab + b^2 ≥ 0
(a - b)^2 ≥ 0
Неравенство доказано.
Решение
<span>5sinx+cosx=5
Применяя формулы:
sinx = sin2*(x/2); cosx = cos2*(x/2)
sin</span>²x/2 + cos²x/2 = 1
Получим уравнение:
5* sin2*(x/2) + cos2*(x/2) = 5*(sin<span>²x/2 + cos²x/2)
5*(2sinx/2 * cosx/2) + (cos</span>²x/2 - sin²x/2) = 5*(sin<span>²x/2 + cos²x/2)
10</span>sinx/2 * cosx/2 + cos²x/2 - sin²x/2 - 5sin<span>²x/2 - 5cos²x/2 = 0
- 6sin</span>²x/2 + 10sinx/2 * cosx/2 - 4cos²x/2 = 0 делим на (- 2cos²x/2 ≠ 0)
3tg²x/2 - 5tgx + 2 = 0
tgx = t
3t² - 5t + 2 = 0
D = 25 - 4*3*2 = 1
t₁ = (5 - 1)/6 = 4/6 = 2/3
t₂ = (5 + 1)/6 = 6/6 = 1
tgx = 2/3
x₁ = arctg(2/3) + πk, k ∈ Z
tgx = 1
x₂ = π/4 + πn, n ∈ Z
Используя теорему Виета:
х²+px+q=0
A) x1+x2=-p
x1×x2=q
-p=(-1)+3=3-1
-p=2
q=(-1)×3
q=-3
x²-2x-3=0
Проверка:
D=(-(-2))²-4×1×(-3)=4+12=16
x1=(-(-2)-√16)/2×1=(2-4)/2=-2/2=-1
x2=(-(-2)+√16)/2×1=(2+4)/2=6/2=3
b) x1+x2=-p
-p=1/2+(-3/4)=1/2-3/4=0,5-0,75
-p=-0,25
-p=-1/4
x1×x2=q
q=1/2×(-3/4)=0,5×(-0,75)
q=-0,375=-(375/1000)=-3/8
x²+(1/4)x-(3/8)=0|×8
8x²+2x-3=0
Проверка:
D=(-2)²-4×8×(-3)=4+96=100
x1=(-2+√100)/2×8=(-2+10)/16=8/16=1/2
x2=(-2-√100)/2×8=(-2-10)/16=-12/16=-3/4
Ответ:
a) x²-2x-3=0
b) x²+(1/4)x-(3/8)=0 или 8x²+2x-3=0