3sin^2х-4sinxcosx+5cos^2x-2=0
3sin^2х-4sinxcosx+5cos^2x-2•(sin^2x+cos^2x)=0
3sin^2х-4sinxcosx+5cos^2x-2sin^2x-2cos^2x=0
Sin^2x-4sinxcosx+3cos^x=0. (:cos^2x)
tg^2x-4tgx+3=0
tgx=t
t^2-4t+3=0
D=16-12=4
t1=(4+2):2=3
t2=(4-2):2=1
tgx=1
X=arctg1+Пк;к€Z
X=П/4+Пк;к€Z
tgx=3
X=arctg3+Пк;к€Z
X^2+bx+3b=0
a=1, b=b, c=3b.
D=b^2-4*a*c
D=b^2-12b.
Квадратное уравнение имеет 1 корень, когда дискриминант равен 0.
Отсюда:
b^2-12b=0
b*(b-12)=0
b1=0
b2=12
Таким образом, при b=0 и 12 данное уравнение имеет один корень.
Ответ: 0 и 12.
<span>6x^2+х =0
x(6x+1)=0
x=0
6x+1=0
6x=-1
x=-1/6
</span>
По теореме Пифагора квадрат гипотенузы равен сумме квадратов катетов.
отсюда ав^2=ас^2+вс^2
34^2=30^2+х<span>^"
корень1156=корень900+х
х=корень1156-900=корень256=16
ответ 16</span>