1) cos²x+2cosxsinx+sin²x=cos²x-sin²x, применила формулы: cos2α
2cosxsinx+2sin²x=0
2sinx(cosx+sinx)=0
sinx=0 , x=0+πn, n∈Z
cosx+sinx=0, это однородное уравнение - разделим обе части на cosx
1+tgx=0
tgx=-1
x=arctg(-1)+πn, n∈Z
x=-π/4+πn, n∈Z
ответ: х1= πn, n∈Z
x2=-π/4+πn, n∈Z
2) sin²x-3cos²x-2sinxcosx=0 /cos²x
tg²x-3-2tgx=0
tgx=a, a²-2a-3=0
D/4=1+3=4, a1=1-2=-1, a2=1+2=3
tgx=-1
x1=-π/4+πn, n∈Z
x2=arctg3+πn, n∈Z
3) cos2x+sin2x=0 /cos2x
1+tg2x=0,
tg2x=-1
2x=-π/4+πn, n∈Z
x=-π/8+πn/2, n∈Z
▪1 задание.
не видно второе действие, предположу что это знак вычитания
▪3 задание.
▪5 3адание.
подсчеты в столбик на фото.
▪7, 9 и 11 задания на фото.
Лучше (удобнее) решать с помощью единичной окружности (см. прикрепленный файл)
1) Проведем прямую х=1
2) Отметим на ней точку у=1
3) Соединим эту точку с началом координат
4) Отметим точки пересечения прямой и окружности
Т.к. тангенс - функция периодическая, с периодом π, то решением будет оставленные части окружности (не пунктиром), а именно:
- в точке (-π/2) тангенс не определен, поэтому данная точка не входит в интервал
- <u>
ответ</u>
5а коэффициент 5
8в коэффициент 8
7с коэффициент 7
<span>d коэффициент 1</span>