<span>Если два угла</span><span> одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны.
угол А подобен углу С, противоположные углы в паралелограмма пропорциональные
и угол ABE подобен углу ABC
вроде так, могу ошибаться </span>
АО : ОВ = 12 : 4 = 3
СО : OD = 30 : 10 = 3
∠AOC = ∠BOD как вертикальные, значит
ΔАОС подобен ΔBOD по двум пропорциональным сторонам и углу между ними.
Значит, ∠САО = ∠DBO = 61°.
Площади подобных треугольников относятся как квадрат коэффициента подобия:
Saoc : Sbod = 3² = 9
Третья сторона равна 8 см, т.к. толmко в этом случае выполняется неравенство треугольника (8+8>2)
Ответ: 8 см
1) Меньшая диагональ основания находится по формуле косинусов:
с² = а² + в² - 2*а*в*cos a
для ромба с = √(2а²-2а²*cos a) = а√(2-2cos a).
Высота <span>параллелепипеда равна Н = с *</span> tg в = а*tg в *√(2-2cos a).
Площадь боковой поверхности параллелепипеда равна:
Sбок =Ро * Н = 4а * а * tg в * √(2-2cos a) = 4а² * tg в * √(2-2cos a).