Вспомним предназначение и смысл формул сокращенного умножения. Ранее мы изучали и повторили достаточно трудоемкую операцию умножения многочленов, ее сложность заключается в том, что многочлен – это сумма одночленов, и для умножения нужно каждый член первого многочлена умножить на каждый член второго многочлена. В результате получаем достаточно большой многочлен, который нужно привести к стандартному виду. Формулы сокращенного умножения как раз упрощают операцию умножения многочленов.Приведем некоторые формулы:<span> – квадрат суммы (разности);</span><span> – разность квадратов;</span><span> – разность кубов;</span><span> – сумма кубов; </span><span> называют неполным квадратом суммы; </span><span> называют неполным квадратом разности;</span><span>Отличие последних двух выражений от полного квадрата состоит в том, что в полном квадрате есть удвоенное произведение выражений, а в неполном – просто их произведение.</span>
<span>а) 3 + (√х)² = 2
</span>(√х)² = - 1
<span>нет решения, т.к. квадрат не может быть отриц. числом
б)2х²+18=18
2x</span>²=0
x=0