Ответ: при р<0.
Решение: Данное в условии неравенство не будет иметь решений, если график функции будет целиком находитьcя ниже оси <em>х</em>.
В случае, если p=1, функция приобретает вид . Это линейная функция, графиком которой является прямая, пересекающая ось <em>х </em>(т.к. ее угловой коэффициент отличен от нуля). Но тогда неравенство будет иметь решения, так что .
В случаях, когда p не равно 1, графиком функции будет являться парабола. Нас интересует такая парабола, ветви которой направлены вниз и вершина которой находится ниже оси <em>х</em> (это будет означать отсутствие решений для неравенства из условия). Для этого требуется два условия:
1) p-1<0, т.е p<1:
2) дискриминант квадратного уравнения меньше нуля.
Найдем дискриминант:
Итак, нам остается лишь решить неравенство p(12-11p)<0. Получаем p<0, либо p>. Но второе решение неравенства не удовлетворяет условию p<1, поэтому оставляем p<0.
Нет, тут нечего сокращать.
Если подкоренное выражение разложить множители рациональных чисел, в числе которых было бы число, которое можно представить в виде квадрата, то следовало бы вынести это число за квадратный корень. Такой процесс называется "Вынесение множителя из-под корня"
В данном случае 37 - подкоренное число. 37 невозможно разложить на множители, которые можно представить в виде квадрата и вынести за корень. Рассмотрим на примере √48.
√48 = √(3*4²) = 4√3.
У нас, как вы заметили, другой случай. Поэтому выражение так и остаётся - √37
Sin2a+sin6a/cos2a+cos6a=2sin2a+6a/2*cos2a-6a/2 / 2cos2a+6a/2*cos2a-6a/2= 2sin4a*cos2a/ 2cos4a*cos2a=2tg4a вроде так)