1) log₃x * (5 - 2log₃x) = 3
5log₃x - 2log₃²x = 3
2log₃²x - 5log₃x + 3 = 0
log₃x = t
2t² - 5t + 3 =0
t₁ = 1
t₂ =
log₃x = 1
x = 3log₃x =
x = Ответ: 3 ;
2) log₂²x + 3log₁/₂x + 2 =0
log₂²x + 3*
+ 2 = 0
log₂²x - 3log₂x + 2 =0
log₂x = t
t² - 3t + 2 =0
t₁ = 1
t₂ = 2
log₂x = 1
x = 2log₂x = 2
x = 4Ответ: 2; 4
3) (1/2log₃x - 6 )*log₉x = 4(2-log₉x)
(1/2log₃x - 6) *
log₃x = t
t² - 12t = 32 - 8t
t² - 4t - 32 = 0
D₁ = 4+32=36
t₁ = 8
t₂ = -4
log₃x = 8
x = log₃x = -4
x = 4) log₂x * log₃x = 4log₃2
log₃x = 2log₃2 log₃x = -2log₃2
log₃x = log₃4 log₃x = log₃
x=4 x = 5) lg²x + 4 = 2*2*lgx
lg²x - 4lgx + 4 = 0
lgx = t
t² - 4t + 4=0
D₁ = 4-4=0
t = 2
lgx = 2
x = 100
C9=c1•q^8
с6=c1•q^5
c1•q^8=100000
c1•q^5=100
Разделим первое уравнение на второе:
q^3=1000
q=10
c1=c6:q^5=100:100000=0,001
Выражение не имеет смысла, если знаменатель равен 0 (на ноль делить нельзя). Т.е.:
3-х=0
х=3.
<em>О</em><em>т</em><em>в</em><em>е</em><em>т</em><em>:</em><em> </em><em>3</em><em>.</em>