Пл.квадрата= a^2= 1.2^2=1.44
Эта фигура получится - трапеция))
т.к. радиусы перпендикулярны ВМ (касательной) и, следовательно, они параллельны-они будут основаниями трапеции,
отрезок касательной будет высотой трапеции (EF).
радиусы окружностей можно найти через площадь треугольников, в которые окружности вписаны,
площадь этих треугольников вычисляется или по формуле Герона (т.к. все стороны в них известны) или как половина произведения двух сторон на синус угла между ними (углы известны из равностороннего треугольника 60° )
высота трапеции находится из прямоугольных треугольников (с катетами-радиусами), гипотенузы которых будут биссектрисами углов (АО1; СО2; т.к. центр вписанной окружности=точка пересечения биссектрис углов треугольника)
отрезки касательных к окружности, проведенных из одной точки, равны))
Треугольник ABD - прямоугольный. AD - гипотенуза. АВ - катет.
Найдем АВ = 12 cos 47 градусов и 50 минут
Площадь параллелограмма равно произведению сторон на синус угла межу ними
АB на AD на sin 47 гра 50 мин
Получим 12· 12 cos 47 градусов и 50 минут ·sin 47 гра 50 мин=
72 sin 95 (градусов) . Применили формулу синуса двойного угла
Пусть АС - биссектриса и диагональ в параллелограмме ABCD, значит BAC = CAD. BCA=CAD как накрест лежащие углы параллельных BC и AD и секущей AC, => BAC = BCA, значит треугольник ABC - равнобедренный с основанием АС =>АВ = ВС по свойству параллелограмма, AB=CD=BC=AD как противоположные стороны => он ромб
Площадь полной поверхности призмы
Sпол = 2Sосн + Sбок;
Площадь основания по формуле Герона:
Sосн = √(p(p-a)(p-b)(p-c)); p = (a+b+c)/2
p= 3*12/2 = 18 см.
Sосн = √(18*6*6*6) = 36*√3 см².
Sбок = P*H;
периметр основания P = 3*12=36 см.
Высоту призмы найдем по т. Пифагора из прямоугольного треугольника CBB₁
H = BB₁ = √(B₁C² - CB²) = √(15² - 12²) = √(225-144) = √81 = 9 см.
Sбок = 36*9 = 324 см².
Sполн = 2*36*√3 см² + 324 см² = 72√3 + 324 см²