<em>Раз ∠АСЕ равен 50°, то ∠ ЕСВ = 90°-50°=40°. А т.к. медиана проведена из вершины прямого угла, то она равна половине гипотенузы, и тогда Δ СЕВ равнобедренный, в нем СЕ=ВЕ, значит, углы при основании равны, тогда </em><em>∠ В = 40°</em>
Параллелограмм - плоская фигура. Диагонали в точке пересечения делятся пополам. Следовательно, координаты точки Е - середины отрезка АС: Е((2+0)/2;(3+3)/2;(2+0)/2) => Е(1;3;1), а координаты точки В - конца вектора ОВ(2;6;2). Тогда вектор ОВ{2;6;2}, его модуль (длина) |OB|=√(2²+6²+2²) = √44. Вектор AC{-2;0;2}, а его модуль |AC|= √(-2²+0²+2²) = 2√2. Найдем косинус угла между векторами ОВ и АС по формуле:
Cosφ =(ОВx*ACx +OBy*ACy+OBz*ACz)/(|OB|*|AC|) = (-4 +0+4)/(4√11) = 0. => φ = 90°.
Ответ а) φ = 90°.
Ответ:АВСД - основание
АВСДА1В1С1Д1 - призма
АС1=а
<АС1Д=30
а) АС=а*sin30=a/2
АД=АС/√2=а/(2√2) -сторона основания призмы
б) 90-30=60 -угол между диагональю призмы и плоскостью основания
в) СС1=а*cos30=а√3/2
Sбок=CC1*Pосн=СС1*4*АД=а√3/2(4*a/(2√2))=а²√(3/2) -площадь боковой поверхности призмы
г) Sасс₁а₁=СС1*АС=а√3/2*(a/2)=а²√3/4 -площадь сечения призмы плоскостью
Объяснение:
Пусть AC=1, углы A и C равны 30 и 45 градусам соответственно. Проводим высоту BH, она разбивает треугольник на два прямоугольных треугольника: ABH и CBH. УГлы ABH равны 30, 60, 90, а углы BCH равны 45, 45, 90. Тогда BH=CH, BH=2AB, AH=AB*sqrt(3)/2. Отсюда получаем, что 1=AH+BH=(sqrt(3)/2+1/2)AB, и AB=2/(sqrt(3)+1). BC=BH*sqrt(2)=AB*sqrt(2)/2=sqrt(2)/(sqrt(3)+1)
Смотрите рисунок 24 см кв.