N1
f'(x) = 36x - x^3 + 20
f'(-1) = -36 + 1 + 20 = -15
N2
f'(x) = (3x^2 -3)'(x + 2) + (x + 2)'(3x^2 - 3) = 6x^2 + 12x + 3x^2 - 3 = 9x^2 + 12x - 3
f'(-2) = 36 - 24 - 3 = 9
A)y^2-6y=0
y(y-6)=0
y=0 или y-6=0
y=6
- 3n - 6 - 14 = - 5
- 3n - 20 = - 5
- 3n = 15
n = - 5
Sinx-(√3/3)cosx=0
Разделим на cosx , получаем. ..
sinx/cosx -√3/3=0
tgx-√3/3=0
tgx=√3/3
x=arctg(√3/3)+πn, n € Z
x=π/6+πn, n € Z
A4=a1+3d=6 => 3d=6-a1
a7=a1+6d=18
a1+2*3d=18
a1+2(6-a1)=18
a1+12-2a1=18
a1=12-18=-6
3d=6-a1
d=(6-a1)/3=(6+6)/3=12/3=4