Подсказка
Медиана прямоугольного треугольника, проведённая из вершины прямого угла, равна половине гипотенузы.
Решение
Пусть CM — медиана прямоугольного треугольника ABC, в котором C = 90o. Тогда CM = AM = BM = m, AB = 2m.
Если BCM > ACM, то
BCM = ACB = 60o, ACM = 30o.
<span>Поэтому </span>B<span> = 60</span>o<span> и треугольник </span>BCM<span> — равносторонний. Следовательно,</span>
BC = CM = m, AC = BCtg60o = m.
<span>Также доступны документы в формате TeX</span>
Ответ
2m, m, m.
Ответ:
D1 C1 B1 параллельные к BDA1
Т.к.MD - биссектриса угла CMB, то угол CMD = углу BMD = 31
угол CMA = 180 - (угол CMD + угол BMD) = 180- (31+31) =180-62 = 118
угол CMA = 118
Диагонали параллелограмма точкой пересечения делятся пополам, а уголы между диагоналями равны α и (180-α).
Тогда по теореме косинусов из треугольника АОВ:
АВ²=АО²+ВО²-2АО*ВО*Cosα
Bз треугольника ВОС:
ВС²=ВО²+АО²-2АО*ВО*Cos(180-α).
Cos(180-α)=-Cosα. Тогда
ВС²=ВО²+АО²+2АО*ВО*Cosα.
В случае 1:
АВ²=2,5²+3²-2*2,5*3*(1/2) =7,75. АВ=√7,75 ≈ 2,8м.
ВС²=2,5²+3²+2*2,5*3*(1/2) =22,75. ВС=√22,75 ≈ 4,8м.
В случае 2:
АВ²=11²+7²-2*11*7*(√3/2) =170-77√3. АВ=√(170-77√3) ≈ 6см.
ВС²=11²+7²+2*11*7*(√3/2) =170+77√3. ВС=√(170+77√3) ≈ 17см.
АС - расстояние от вершины А до катета ВС. Угол САЕ равен 90-60=30. значит АС=2СЕ=2*14=28