Дано: треугольник АВС; АВ=АС; НМ - средняя линия; НМ параллельно ВС; НМ=13 см; ВМ - медиана, ВМ=26 см.
Найти: КР.
Решение:
1) треугольник АВС, НМ параллельно ВС, НМ = 1/2 ВС(свойство средней линии) => ВС=26 см.
2) треугольник ВМС, ВМ перпендикулярно МС (свойство равнобедренного треугольника АВС), ВС=26 см, ВМ=24 см=> МС = = 10 (см)
3) АС = 2МС = 20 см.
4) КР = 1/2АС = 10 см.
Ответ: 10 см
Не вернос. Точка Касания двух окружностей удалена от центра на величину радиуса каждой окружности
Объяснение:
<em>Радиус</em><em> </em><em>-</em><em> </em><em>это</em><em> </em><em>такая</em><em> </em><em>прямая</em><em> </em><em>которая</em><em> </em><em>проводится</em><em> </em><em>из</em><em> </em><em>цен</em><em>т</em><em>ра</em><em> </em><em>окружности</em><em> </em><em>до</em><em> </em><em>точки</em><em>,</em><em> </em><em>лежащей</em><em> </em><em>на</em><em> </em><em>окружности</em><em> </em>
<em>В</em><em> </em><em>данном</em><em> </em><em>случае</em><em> </em><em>центр</em><em> </em><em>окружности</em><em> </em><em>-</em><em> </em><em>точка </em><em>О</em><em> </em><em>=</em><em>></em><em> </em><em>радиусы</em><em> </em><em>-</em><em> </em><em>АО</em><em>,</em><em> </em><em>ОВ</em><em>,</em><em> </em><em>ОС</em><em>,</em><em> </em><em>О</em><em>D</em>
<em>ВСЕГДА</em><em> </em><em>в</em><em> </em><em>окружности </em><em>радиусы</em><em> </em><em>все</em><em> </em><em>равны</em>
<em>Доказывать</em><em>,</em><em> </em><em>что</em><em> </em><em>это</em><em> </em><em>радиус </em><em>не</em><em> </em><em>нужно,</em><em> </em><em>но</em><em> </em><em>упомянуть</em><em>,</em><em> </em><em>что</em><em> </em><em>прямая</em><em> </em><em>явл</em><em>яется</em><em> </em><em>радиусом</em><em> </em><em>-</em><em> </em><em>нужно</em>
<em>Если </em><em>что</em><em>,</em><em> </em><em>диаметр</em><em> </em><em>состоит</em><em> </em><em>из</em><em> </em><em>2</em><em> </em><em>одинаковых</em><em> </em><em>радиусов</em><em> </em><em>и</em><em> </em><em>диаметр</em><em> </em><em>-</em><em> </em><em>прямая</em><em>,</em><em> </em><em>проходящая</em><em> </em><em>из</em><em> </em><em>одной</em><em> </em><em>точки</em><em> </em><em>окружности</em><em>,</em><em> </em><em>до</em><em> </em><em>другой</em><em> </em><em>точки</em><em> </em><em>окружности</em><em> </em><em>и</em><em> </em><em>при</em><em> </em><em>этом</em><em> </em><em>проходящая</em><em> </em><em>через</em><em> </em><em>центр</em><em> </em><em>окружн</em><em>ости</em>
<em>Диаметры</em><em> </em><em>-</em><em> </em><em>АС</em><em> </em><em>и</em><em> </em><em>BD</em>
Смотри, угол который находится в центре круга он называется-центральный,он равен дуге,на которую он опирается. Угол который лежит на "стенках" окружности называется-вписанный,он равен половине дуге на которую он опирается.
Например:возьмем твою задачу под номером 1. Центральный угол равен 120 градусам,из этого следует,что дуга тоже равна 120 градусам,так как угол центральный. Нам надо найти угол,который лежит "на стенке" окружности,но этот угол опирается на дугу,которая равна 120 градусам,из этого следует,что угол равен половине дуге,то бишь 120/2=60. Угол равен 60 градусам.
Остальное по аналогии,надеюсь,что помогла)
1) В тр-ке АММ1 ММ1║СС1, АС=МС, значит СС1 - средняя линия, которая равна половине параллельной ей стороны, т.е. СС1=ММ1 : 2=18/2=9 см.
2) Так как ММ1║РР1║АА1, ММ1≠АА1 и РА=АМ, то ММ1Р1Р - трапеция со средней линией АА1.
АА1=(ММ1+РР1)/2 ⇒ РР1=2·АА1-ММ1=2·8-6=10 см - это ответ.