Координаты вектора равны разности соответствующих координат точек его конца и начала ab{х2-х1;y2-y1;z2-z1}
Сложение векторов : a+b=(x1+x2;y1+y2;z1+z2).
Вектор ВА{0-(-1);-1-4;2-3} или BA{1;-5;-1}.
Вектор CD{-1-2;0-1;3-0} или CD{-3;-1;3}.
Вектор р{1+(-3);-5+(-1);-1+3} или p{-2;-6;2}.
Длина (модуль) вектора
|АС| = √[(Xc-Xa)²+(Yc-Ya)²+(Zc-Za)²] или |AC|=√(-2²+2²+-2²)=2√3.
Ответ: р{-2;-6;2}; |AC|=2√3.
Площадь основания равна (Sполн-Sбок)/2=18. Проведем меньшую диагональ в ромбе, она разобьет его на 2 равнобедренных треугольника с углом при вершине 30 градусов. Площадь каждого равна 9. Площадь такого треугольника можно вычислить по формуле S=1/2*a*a*sin30. sin30=1/2, S=9, тогда 36=a*a, a=6, сторона ромба равна 6.Боковая поверхность равна P*H, где P - периметр ромба, он равен 6*4=24. Тогда H=96/24=4.
А + б + с = 180
Б - х, в 4х. 45 + х + 4х = 180
5х= 135
Х = 27 (б) с = 108
Дано: Треугольник ABC, основание AC. AB = BC, BH - высота, медиана
Решение: метод площадей
1. 1) S = 1/2 * p * r, где p = периметр ABC, r - радиус, S = площадь
2) S = AC*BH*1/2
2. 1)AH = 1/2 AC = 8 см. AB = 10см |=> BH^2 = AB^2 - AH^2;
BH^2 = 10*10 - 8*8 = √36= 6<span>
</span>2) S = 16 * 6 * 1/2 = 48<span> см2
</span>3) p = 16 + 16 + 10 = 36 см
3. r = 2S/p (Из первой формулы),
r = (2*48<span>) / 36 = 2,66 см</span><span>
</span>
Ответ: r = 2,66 см