площадь трапеции это полусумма оснований умноженная на высоту. т.е (угол с 90 градусов) S=0.5(BC+AD)*АВ . найдём ВС. Проведём перпендикуляр СК из точки С к прямой АD. ВС=AD-КD. AD по условию равна 18, найдём KD из треугольника СКD: угол К=90 градусов (т.к СК перпендикулярно АD), угол D=45 градусов по условию, найдём угол С. угол С=180 градусов - угол D- угол К. угол С=180-45-90=45градусов. уголС=углуD значит треугольник СKD равнобедренный и это значит что СК=КD=ВА=10. ВС=АD-KD=18-10=8. S=0,5(ВС+АD)АВ=0,5(8+18)10=130
Назовём параллелограмм АВСD ,угол А=65,тогда противолежащий ему угол С будет тоже 65 градусов,в четырехугольнике сумма углов составляет 360.тогда остаётся360-(65*2)=230.
230:2=115,таким образом 65,65,115
Пусть точка N - середина отрезка АР, а точка M - середина отрезка QB.
Нам дано: АР=2QB=2PQ. Это значит, что PQ=QB=(1|4)АВ и АР=(1/2)*АВ.
QM=MB (точка М - середина QB)=(1/8)АВ.
АN=NP (точка N - середина АР)=(1/2)АР=(1/4)АВ. АВ=а (дано).
Тогда имеем:
а) отрезок АМ=АР+PQ+QM или АМ=(1/2)АВ+(1/4)АВ+(1/8)АВ=(7/8)а.
b) отрезок NM=NP+PQ+QM или (1/4)а+(1/4)а+(1/8)а=(5/8)а.
Ответ а) (7/8)а. b) (5/8)а.
У нас есть 50’ - это сумма двух из углов. Но мы знаем что все углы равны 360’... 360’-50’=310’ это сумма двух других углов ...310:2=155 мы дели на два потому что нам нужно узнать сколько градусов один угол