Пусть неизвестный катет = х, тогда гипотенуза = 2х. По теореме Пифагора:
(2х²) - х² = 6²
4х² - х² = 36
3х² = 36
х² = 12
х = √12 = 2√3
Ответ: 2√3
Внешний угол прямоугольного треугольника при вершине А равен 140°.
Значит, смежный с ним угол САВ=180°-140°=40°.
АD - биссектриса и делит угол САВ пополам.
Угол САD=20°
Сумма острых углов прямоугольного треугольника 90°
∆ СDA- прямоугольный, ⇒
∠СDA=90°-∠CВD=70°
Для Δ BAD угол СВD - внешний и равен сумме двух внутренних, не смежных с ним. ⇒
∠DBA=70°-∠DAB=70°-20°=50°
∠ADB=180°-CDA=110°
∠DAB=20°
В перпендикулярном к плоскостям обеих иснований сечении, проходящем через центр вписанной сферы, найдем боковые стороны (это равнобедренная трапеция, в которую вписана окружность, значит, суммы противоположных сторон равны): 3 + 27 = 30. 30/2 = 15.
Это есть высота трапеции - боковой грани нашей усеченной пирамиды. Ее площадь можем найти: (3 + 27)*15/2 = 225.
В боковой поверхности нашей пирамиды таких поверхностей четыре, т.е. площадь боковой поверхности будет равна 225*4 = 900.
Ответ: 900
Пирамида КАВС, К-вершина, АВС-правильный треугольник АВ=ВС=АС=3, КА=КВ=КС=2, О-центр основания (пресечение высот=медианам=биссектрисам), КО-высота пирамиды, площадьАВС=АС в квадрате*корень3/4=9*корень3/4, проводим высоту ВН, ВН=АС*корень3/2=3*корень3/2, ОН=1/3ВН=3*корень3/(2*3)=корень3/2, АН=НС=1/2АС=3/2, проводим апофему КН, треугольник АКН прямоугольный, КН=корень(КА в квадрате-АН в квадрате)=корень(4-9/4)=корень7/2треугольник КНО прямоугольный, КО=корень(КН в квадрате-ОН в квадрате)=корень(7/4 - 3/4)=1, объем=1/3*площадьАВС*КО=1*9*корень3/(4*3)=3*корень3/4