1) Найдем сторону прямоугольника по теореме Пифагора.
b² = 13² - 5² = 169 - 25 = 144 = 12²; b = 12 см.
Площадь прямоугольника S = 5 см * 12 см = 60 см².
2) В равнобедренной трапеции AF = (AD-FE)/2 = (25 - 15)/2 = 5 см.
Найдем высоту трапеции по т.Пифагора.
h² = 13² - 5² = 169 - 25 = 144 = 12²; h = 12 см.
Площадь трапеции S = (BC+AD)*h/2 = (15 + 25)*12/2 = 240 см².
Треугольник АВС равнобедренный, следовательно, углы при АС равны (180°-120°):2=30°
По т.синусов
АВ:sin30°=2R
2R=2:1/2=4
R=2 см
--------
<u>Вариант решения:</u>
<span>Соединим вершину В с центром окружности О. </span>
<span>Т.к. <u>центр описанной окружности лежит на срединном перпендикуляре</u>, ВО</span>⊥<span>АС. ВН-высота и биссектриса ∆ АВС и делит угол АВС пополам. </span>
∠АВО=120°:2=60°
Углы при основании равнобедренного треугольника АОВ равны. ⇒
<span> ∆ АОВ - равносторонний. R=AB=2 см.</span>
АВ паралельна СД, АС паралельна ВД, чотирикутник у якого протилежні сторони попарно паралельні-паралелограм, АВСД паралелограм, АВ=СД=4, АС=ВД=5,6
2*sin150-4*cos120+2*tg135=1.