<span>Построим треугольник АВС. Проведём перпендикуляр ВД=15. В треугольнике АВС проведём высоту ВК на АС. Поскольку треугольник равнобедренный, она будет одновременно медианой и биссектрисой. Значит АК=КС=12/2=6. Расстояние от точки Д до АС равно перпендикуляру к ней ДК. Соединим точки А и Д, С и Д . Треугольник ДАС также равнобедренный и его высота также приходит в точку К. Проекцией ДАС на плоскость АВС будет треугольник АВС, поскольку точки А и С лежат в плоскости АВС а точка Д пересекающихся прямых АД и ДС проецируется на плоскость АВС в точку В.( АВ и ВС -проекции АД и ДС ). Найдём ВК=корень из(АВ квадрат -АК квадрат)=корень из(100-36)=8. Далее, также по теореме Пифагора находим расстояние ДК=корень из(ВДквадрат+ВКквадрат)= корень из(225+64)=17.</span>
В прямоугольном треугольнике АОВ ∠СВА=90-∠СВО.
В тр-ке СВО СО=ВО ⇒ ∠СВО=∠ВСО.
В тр-ке ВСД ∠СВД=90°, т.к. он опирается на диаметр, значит ∠СДВ=90-∠СВД=90-∠ВСО=∠СВА.
Так как в тр-ках АВД и АВС ∠В общий и ∠СВА=∠СДВ - они подобны.
Доказано.
Классическое построение золотого сечения выглядит так:
На прямой АВ, с помощью циркуля восстановим серединный перпендикуляр. Параллельно нему построим параллельную прямую, проходящую через точку В, которая будет перпендикулярна АВ. Из точки В проведём дугу радиусом, равным половине АВ пересекающую свой перпендикуляр в точке С. Тем же радиусом, проведём дугу из точки С, пересекающую прямую АС в точке Д. С помощью циркуля, на прямой АВ, отложим отрезок АЕ, равный АД. Тогда построенные отрезки будут удовлетворять тождеству: АВ/АЕ=АЕ/ВЕ=φ.
На новом рисунке мы видим, что расстояния от точек В и С до места пересечения отложенных дуг равны, образуя равнобедренный треугольник. Место их пересечения соответствует точке С на первом рисунке. АВ=2АО, ОС=ОВ, АС=АЕ, значит точка Е делит отрезок АВ в золотом отношении.
Соединим точки между собой, получим 2 треугольника.
∠АМD=∠BMC, как вертикальные, ∠ADM= ∠MCB-как вписанные углы, опирающиеся на одну дугу⇒ΔAMB подобен ΔDMC по двум углам-по первому признаку.
1
Ось симметрии второго порядка проходит перпендикулярно плоскости рисунка через точку А
2
тут всё просто
3
Параллелограмм (для прямоугольника слишком просто)
Всё отзеркаленное снабжено единичками
180-116=64. угол В равен 64 градуса