Дано:окр.с центром О, R=5см, АВ-хорда, АВ=6, М-середина АВ
Найти: ОМ=?
Решение:
Так как АВ хорда, то точки А и В лежат на окружности. Проведу ОА и ОВ. Они являются радиусами одной окружности, значит ОА=ОВ=5см. Рассмотрю треугольник АОВ, он равнобедренный (так как АО=ОВ по доказанному) с основанием АВ. Проведу ОМ. Так как М - середина АВ, то ОМ - медиана, значит АМ=МВ=1/2АВ=1/2*6=3 см. А в равнобедренном треугольнике медиана, проведенная к основанию, является высотой. ОМ - высота, угол ОМА - прямой.
рассмотрю треугольник ОМА, он прямоугольный (так как угол ОМА - прямой). По теореме Пифагора найду ОМ:
ОМ²=ОА²-АМ²= 5²-3²=25-9=16
ОМ=4см
Ответ: ОМ= 4
Эти треугольники равны и подобны по трём сторонам и стороны а и в параллельны
a₄ = 8
r₄ = a/2 = 4 (является R для треугольника)
r₃ = R/2 = 2
a₃ = R√3 = 2√3
P₃ = a₃*n = a₃*3 = 2√3*3 = 6√3
S₃ = ½*6√3*2 = 6√3
Площадь найдем по формуле
(h - высота, а - сторона, к которой проведена высота)...