Ну это же почти устно всё.
В задаче 1 точка D лежит на плоскости, перпендикулярной EС и проходящей через его середину. Вектор EC = (5, -3, 1), поэтому уравнение плоскости должно иметь вид
5x - 3y + z + F = 0; где F - какое то число. Уже ясно, что из предложенных ответов подойти может только вариант 4), надо только проверить, что точка с координатами "(E + C)/2", то есть (3/2, -1/2, 5/2) удовлетворяет уравнению. 10*3/2 + 6*1/2 + 5*2/1 = 23; подходит.
В задаче 2 можно поступить "тупо" - найти длины сторон треугольника
(10, √40, √68) и вычислить площадь по формуле Герона. Это очень хорошее упражнение. Но есть, конечно, и более простой способ - расстояние от точки T до MN (MN = 10) вычислить довольно просто, так как расстояние от точки O до MN - это высота египетского треугольника OMN, она равна 6*8/10 = 4,8; если основание этой высоты обозначить буквой H, то треугольник TOH тоже оказывается пифагоровым - у него катеты 2 и 4,8, то есть это треугольник, кратный (5,12,13), и третья сторона равна 5,2
Площадь MNT равна 10*5,2/2 = 26
Ответ: Сардоба- хранилище для воды, заглубленная в землю накрытая сводом цистерна.
Мавзолей Кесене - исторический памятник.
Ташнау- санитарно-очистительное устройство средневекового дома.
Рабад - окраина, торгово-промышленное предместье в средневековых городах.
Шахристан - в средние века часть иранского и среднеазиатского города, находившиеся внутри городских стен.
Мечеть - мусульманское молитвенное архитектурное сооружение.
Объяснение:
Найдем уравнение прямой проходящей через точки А(3;12) и С(-6;0)
12=3к+с
0=-6к+с
Отнимем 9к=12⇒к=4/3
с=6к=6*4/3=8
у=4/3*х+8 или 4х-3у=24=0
найдем угол А по теореме косинусов
cosA=(AC²+AB²-BC²)/2AC*AB
AB²=(4-3)²+(5-12)²=1+49=50⇒AB=5√2
AC²=(-6-3)²+(0-12)²=81+144=225⇒AC=15
BC²=(-6-4)²+(0-5)²=100+25=125⇒BC=5√3
cosA=(225+50-125)/2*15*5√2=150/150√2=1/√2⇒<A=45
Найдем высоту BH опущенную на сторону АС
ΔABH прямоугольный,<A=45⇒<ABH=45⇒AH=BH
по теореме Пифагора 2BH²=AB²⇒BH=√AB²/2=√50/2=√25=5
Вся сумма углов равна 360 градусов, следовательно,360:6=60 градусов