Будем использовать следующую теорему: м<span>едианы треугольника пересекаются в одной точке и точкой пересечения делят друг друга в отношении 2:1, считая от вершины. Поэтому EO=12, OF=6, MO=10, OK=5. Также используем теорему Пифагора и находим, что EK=KN=13, MF=FN=8. Проведем отрезок ON. Рассмотрим треугольник MON. По теореме косинусов
ON</span>²=MO²+MN²-2MO*MN*cosα (α - угол OMN). cosα=MF/MO=0,6.
Все данные нам известны, находишь ON² >>затем ON.
Отрезки AB и CD имеют общую часть CB = x.
Тогда AB = AC +x, a CD = x + BD. То есть AB = 65 + x, а CD = 64 + x.
65 + x > 64 + x. Значит, АВ > CD.
1.
М - середина АВ, значит МВ = АВ/2
Р - середина МВ, значит РВ = МВ/2 = АВ/4
К - середина ВС, значит КС = ВС/2
Е - середина КС, значит ЕС = КС/2 = ВС/4
N - середина АС, значит NA = АС/2
G - середина NA, значит GA = NA/2 = AC/4
По условию
PB + EC + GA = 12
АВ/4 + ВС/4 + АС/4 = 12
1/4 · (АВ + ВС + АС) = 12
АВ + ВС + АС = 12 · 4 = 48 (см)<span>
</span>2.
Из решения первой задачи следует, что
АР = 3/4 АВ
ВЕ = 3/4 ВС
CG = 3/4 AC
По условию
AP + BE + CG = 108
3/4 АВ + 3/4 ВС + 3/4 АС = 108
3/4 · (АВ + ВС + АС) = 108
АВ + ВС + АС = 108 · 4/3 = 144 (см)
Если точки лежат на одной прямой, то выполняется равенство AB+BC = AC
2,6+6,7=9,3 - это противоречит равенству. Точки не могут лежать на одной прямой.
Это будет что похожее на пирамиду , все равно что это так как она имеет те же параметры что и у пирамиды,
как известно V=SH/3 , в оснований прям-ый треугольник S=6*6/2 =18
H=6
V=18*6/3=36 см куб