<em>3)</em> Предположим, что в треугольнике 2 угла тупые. Тогда Сумма углов будет больше 180 градусов, что противоречит теореме о сумме углов треугольника.
<em>6)</em> Пусть
угол C>угла B. Тогда AB>AC. Предположим, что это не так. Тогда либо AB=AC или AB<AC. Если разобрать первый случай, то треугольник ABC-равнобедренный и значит угол C=углу B. Во втором случае угол B> угла C, а это противоречит условию C>B. Поэтому AB>AC
<em>7-11 на фотографиях
11) </em>Если в треугольнике есть угол равный 30 градусам. то катет, лежащий против него равен половине гипотенузы
<span>а) </span>
<span>ABCD - прямоугольник. МВ перпендикулярна плоскости АВСD. </span>
<span><em>МА</em><em> - наклонная, </em><em>АВ</em><em> - ее проекция. АВ</em></span><em>⊥</em><span><em>АD. </em></span>
<span>По т.о 3-х перпендикулярах МА</span>⊥<span>AD </span>⇒<span> <u>∆ МАD- прямоугольный</u>. </span>
<span><em>МС</em><em> - наклонная, – </em><em>ВС</em><em> её проекция. </em></span>
<span>По т.о 3-х перпендикулярах МС</span>⊥<span>СD – <u>∆ МСD- прямоугольный. ч.т.д</u>.</span>
<span>б) </span>
АВ=МВ:tg45°=4:1=4 (см)
ВС=MB:tg30°=4:(1/√3)=4√3
<span>CD=AB=4; AD=BC=4√3</span>
в)
<span>MD - наклонная, BD - её проекция. </span>
ВС - проекция наклонной МС.⇒
<span><em>∆ BDС</em><em> - проекция </em><em>∆ MDС</em><em> на плоскость АВСD. </em></span>
<span>S∆ BCD=BC•CD:2=4√3•4:2=8√3 см</span>²
∠2 =<span>∠1 =126° (т.к. соответственные углы)
</span>∠3 = 180<span>°</span>-126° = 54°<span> (смежные)
</span>∠4 =∠3 = 54° (вертикальные углы)
<span>АВ-гипотенуза, АС - прилежащий катет, ВС - противолежащий. Находишь ВС = 25-16 (и корень из всего этого) = 3. синус угла А = 3/5</span>