1. Всего частей: 3+5+10 = 18, в одной части: 360° : 18 = 20°
2. Тогда:
1) дуга AC = 3*20° = 60°
2) дуга BC = 5*20° = 100°
3) дуга AB = 10*20° = 200°
3. Углы ВАС, АСВ и АВС - вписанные в окружность, они равны половиине центральных углов, а т.к. центральные углы равны градусной мере дуг, то вписанные углы равны половине градусной мере дуги:
1) угол ВАС = 0,5 дуги ВС = 50°
2) угол ВСА = 0,5 дуги АВ = 100°
3) угол АВС = 0,5 дуги АС = 30°
из этих углов меньший угол - угол АВС = 30°
Ответ: 30°
АВ перпендикулярно ВО, угол АВО = 90º, по теорема Пифагора находим АО.
АО^2= 18^2 + 80^2 = 6724
АО = 82
так как АО состоит из АD + DO, где DO, как и ВО - радиус, то АD = 82 - 80 = 2
Если один угол, как бы наложить на другой, мы увидим что они равностороние.
Так как эти углы равносторонние, мы можем смело сказать что они одинаковые.
АВ находим по теореме Пифагора. АВ=корень из АС^2+BC^2=корень из 100=10
sinB равент отношению противолежащего катета к гипотенузе.sinB=АC/AB=5 /10=1/2.Вроде так решается