Ответ:
<!--c-->
image
На сторонах угла∡ABC точки A и C находятся в равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥BA CD⊥BC.
1. Чтобы доказать равенство ΔAFD и ΔCFE, докажем, что ΔBAE и ΔBCD, по второму признаку равенства треугольников:
BA=BC
∡BAF=∡BCF=90°
∡ABC — общий.
В этих треугольниках равны все соответсвующие эелементы, в том числе BD=BE, ∡D=∡E.
Если BD=BE и BA=BC, то BD−BA=BE−BC, то есть AD=CE.
Очевидно равенство ΔAFD и ΔCFE также доказываем по второму признаку равенства треугольников:
AD=CE
∡DAF=∡ECF=90°
∡D=∡
Объяснение:
Так как углы AOB и DOC равны так как они вертикальные отсюда, треугольники равны по двум углам и стороне. из равенства следует, что углы DOC = AOB, CDO = АВО <span>отсюда угол АВО равен 63 град, угол ВАО = ОСD по условию, отсюда угол ВАО = 37 град, угол ВОА равен 80 град</span>
6 см
Если найти угол Д, то он будет равен 45 (360-(180+135)=45))
Теперь опустим высоту СН. У нас получается отрезки АН=8 и НД=6
Исходя из суммы в треугольнике СНД находим, что угол С тоже 45 (180-(90+45)). Следовательно, треугольник равнобедренный. Следовательно высота СН=6 и ВА тоже равно 6 см
180°-104°=76°( угол АВС )
АВС=АСВ=76°
АВС —равностороний треугольник
АВ=АС=12см
ОТВЕТ:АВ=12см