Рассмотрим осевое сечение конуса - это равносторонний тругольник (т.к.фигура-конс, то сечение-равнобедренныйΔ, углы при основании равны между собой и равны 60, тогда и третий угол тоже 60⇒Δ-равносторонний)
Т.к. Δ - равносторонний, а диаметр основания = основанию Δ=6, то и боковые стороны (которые, кстати, являются образующими конуса)=6.
Найдем высоту конуса, которая равна высоте рассматриваемого Δ. По т. Пифагора=√6²-3²=√36-9=√27=3√3
Итак, мы нашли высоту h=3√3, нам известен радиус r = 1/2диаметра = 3 и образующая конуса l=6. Подставляем все это в формулы:
V=1/3 π*h*r²=1/3*π*3√3*3²=9π√3 см³
S=πr(r+l)=π*3*(3+6)=27π см²
Верно
Если треугольники равны, они имеют равные стороны и углы. А если все составляющие его равны, следовательно, что их периметры тоже будут равны
<span>tgА=СВ:АС=3
18:АС=3
АС=18:3=6
</span>
1-в
2-а
3. В треугольнике АВС известен угол и противолежащий катет, поэтому общая сторона:
.
В треугольнике АВД АВ гипотенуза, а нужно найти противолежащий катет, поэтому:
.
4. Меньшая боковая сторона является высотой. Найдем большее основание. Острый угол равен 60. Прилежащий катет 6. Тогда большее основание 12. Находим площадь трапеции:
========== 4 ==========
Рассмотрим ΔA1B1C1, т.к. он равнобедренный, то B1O - высота, медиана и биссектриса. Значит, ∠B1 = 2 * ∠A1B1O = 2 * 32° = 64°. Т.к. треугольники по условию равны, то ∠B = ∠B1 = 64°
========== 4 ==========
Пусть боковая сторона AB = х см. Значит, вторая боковая сторона тоже BC = х см (т.к. треугольник равнобедренный). Основание AC = 5*x см
Р = AB + BC + CA
99 = x + x + x/5
99 = 11x/5
11x=99*5
x = 45 см.
Боковые стороны AИ = BC = 45 см. Значит, основание АС = 45/5 = 9 см