<span> 1. <span>Дано: вершины треугольника АВС лежат на окружности с центром О. Угол ВАС=50°, дуга АВ:дугу АС=3:2. Найти углы </span></span>∠В, ∠С, ∠ВОС.
Вершины треугольника делят окружность на 3 дуги.
Углы треугольника - вписанные. <span>Вписанный угол равен половине дуги, на которую опирается. . </span><span>Вписанный угол ВАС=50° опирается на дугу ВС. </span>
След. ∠ВОС=◡ ВС =100°.
Полная окружность содержит 360°.
◡АВ+◡АС=360°- ◡ВС=260°
<span>Примем коэффициент отношения дуг равным а. Тогда </span>
◡АВ:◡АС=3а:2а =5а
5а=260°
а=52°
◡АС=104°, ⇒ вписанный угол В опирается на неё и равен 52°
<span>◡</span>АВ=156°, ⇒ вписанный угол С опирается на нее и равен 78°
<span> * * * </span>
<span>2. <em>Хорды АВ и CD пересекаются в точке Е. <u>Найдите CD</u>, если АЕ=3 см, ВЕ=9 см, а СЕ в 4 раза длиннее DE.</em> </span>
<em>Если две хорды пересекаются в некоторой точке, то произведение отрезков одной хорды равно произведению отрезков другой.</em>
СЕ•DE=AE•BE
СЕ=4DE ⇒
4DE•DE=3•9
<span>4DE</span>²<span>=27 </span>
DE=√27/4=3√3/2=1,5√3
CE=4•1,5√3=6√3
CD=1,5√3+6√3=7,5√3 см
Из данных отношений площадей следует, что SE:EB=3:1, SF:FC=4:1, SD:DA=5:1. Это значит, что SE:SB=3:4, SF:SC=4:5, SD:SA=5:6. Пирамида SDEF построена на сторонах того же угла, что и SABC, поэтому отношение её объёма к объёму всей пирамиды равно произведению трёх указанных выше отношений чисел, то есть (3/4)(4/5)(5/6)=1/2. Обосновать факт насчёт отношения объёмов можно, например, при помощи смешанного произведения векторов, или путём сравнения площадей оснований и высот.
Теорема Пифагора — одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника.
Формулировки
Геометрическая формулировка:
Изначально теорема была сформулирована следующим образом:
В прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах.
Алгебраическая формулировка:
В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.
То есть, обозначив длину гипотенузы треугольника через c, а длины катетов через a и b:
a^2+b^2=c^2
Обе формулировки теоремы эквивалентны, но вторая формулировка более элементарна, она не требует понятия площади. То есть второе утверждение можно проверить, ничего не зная о площади и измерив только длины сторон прямоугольного треугольника.
Обратная теорема Пифагора:
Для всякой тройки положительных чисел a, b и c, такой, что ,
a^2+b^2=c^2
существует прямоугольный треугольник с катетами a и b и гипотенузой c.
История теоремы:
В древнекитайской книге Чу-пей говорится о пифагоровом треугольнике со сторонами 3, 4 и 5. В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Басхары.
Мориц Кантор (крупнейший немецкий историк математики) считает, что равенство 3 ² + 4 ² = 5² было известно уже египтянам ещё около 2300 г. до н. э., во времена царя Аменемхета I (согласно папирусу 6619 Берлинского музея). По мнению Кантора, гарпедонапты, или «натягиватели верёвок», строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5.
Очень легко можно воспроизвести их способ построения. Возьмём верёвку длиною в 12 м и привяжем к ней по цветной полоске на расстоянии 3 м от одного конца и 4 метра от другого. Прямой угол окажется заключённым между сторонами длиной в 3 и 4 метра. Гарпедонаптам можно было бы возразить, что их способ построения становится излишним, если воспользоваться, например, деревянным угольником, применяемым всеми плотниками. И действительно, известны египетские рисунки, на которых встречается такой инструмент, — например, рисунки, изображающие столярную мастерскую.
Несколько больше известно о теореме Пифагора у вавилонян. В одном тексте, относимом ко времени Хаммурапи, то есть к 2000 году до н. э., приводится приближённое вычисление гипотенузы прямоугольного треугольника. Отсюда можно сделать вывод, что в Двуречье умели производить вычисления с прямоугольными треугольниками, по крайней мере в некоторых случаях. Основываясь, с одной стороны, на сегодняшнем уровне знаний о египетской и вавилонской математике, а с другой — на критическом изучении греческих источников, Ван-дер-Варден (голландский математик) сделал вывод о большой вероятности того, что теорема о квадрате гипотенузы была известна в Индии уже около XVIII века до н. э.