AD=DC т.к BD медиана угол KAD=MCD как углы KAD=MCD как углы при основании равнобедр треуг AK=KB=BM=MC как половинки сторон равнобедр треуг значит треуг AKD=DMC по трем сторонам
В плоскости основания точкой, равноудалённой от вершин треугольника является центр описанной окружности. Восстановленный из этой точки перпендикуляр к плоскости основания будет местом точек, равноудалённых от вершин треугольника.
Исходный треугольник прямоугольный, его гипотенуза
с² = a² + b² = 24² + 18² = 576 + 324 = 900
c = √900 = 30 дм
Гипотенуза является диаметром описанной окружности.
А₁С₁ = 30 дм
А₁О₁ = А₁С₁/2 = 15 дм
АТ = 25 дм
высоту исходной пирамиды h = О₁Т найдём по теореме Пифагора
О₁Т² + А₁О₁² = АТ²
h² + 15² = 25²
h² = 625-225 = 400
h = 20 дм
Объём полной пирамиды А₁Б₁С₁Т найдём, высчислив площадь основания как половину произведения катетов. Высота пирамиды тоже известна.
V(А₁Б₁С₁Т) = 1/3*S(А₁Б₁С₁)*h = 1/3*1/2*24*18*20 = 8*9*20 = 1440 дм³
Все размеры срезаемой верхней части пирамиды в 2 раза меньше размеров исходной пирамиды, т.к. отрезки между середин рёбер являются средними линиями соответствующих треугольников
А₂Т = А₁Т/2
Б₂Т = Б₁Т/2
т.е. коэффициент подобия
k = 1/2.
При этом площади тел относятся как k², а объёмы как k³
Объём срезаемой части пирамиды
V(А₂Б₂С₂Т) = k³*V(А₁Б₁С₁Т) = 1/8*1440 =180 дм³
И объём усечённой пирамиды
V = V(А₁Б₁С₁Т) - V(А₂Б₂С₂Т) = 1440 - 180 = 1260 дм³
Ответ будет в приложенном рисунке
Четырехугольник асбд-параллелограмм, т.к. его диагонали сд и аб делятся точкой пересечения (О) пополам.
т.к. ас||бд, при секущей сб ∠асб и ∠сбд односторонние, их сумма равна 180°, тогда ∠асб=180°-∠сбд=180°-68°=112°
ответ:112°
S=πR²
Радиус круга будет равен стороне квадрата.
По т. Пифагора с²=2a²
16=2a²
a²=8
a²=R² ⇒ S=8π