1. Свойство смежных углов: Сумма смежных углов равна 180°.
Определение: Два угла называются смежными, если у них одна сторона общая, а другие стороны являются дополнительными лучами. (Чертеж на первой картинке)
2. Свойство вертикальных углов: вертикальные углы всегда равны.
Определение: Два угла называются вертикальными, если стороны одного угла являются дополнительными лучами к сторонам другого. ( Чертеж на второй картинке)
3. Первый признак: если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Второй признак: Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, такиетреугольники равны.
Третий признак: если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то такие треугольники равны.
Попорциональные отрезки-это отрезки для длин которых выполняется попорция
Сходственные стороны треугольника-это стороны лежащих напротив их равных углов
<span>Первый признак равенства треугольников.</span>
<span>Все помнят первый признак равенства тр-ков - по 2-м сторонам и углу между ними.</span>
<span>Надеюсь, помнят и его доказательство: </span>
<span>Имеем тр-ки АВС и А`В`С`, у которых АС = А`С`, АВ = А`В` и угол ВАС = углу В`А`С`</span>
<span>Совмещаем отрезок АС с А`С`, при этом угол ВАС совместится с В`А`С` и прямая АВ совместится с А`В`. Поэтому точка В совместится с точкой В` из-за АВ = А`В` и тр-к АВС совместится с А`В`С`, то есть эти тр-ки конгруэнтны (по рабоче-крестьянскому - равны).</span>
<span>До сих пор кажется, что всё ОК.</span>
<span>А теперь сюрприз.</span>
<span>Пусть у нас равнобедренная трапеция АВСД с равными боковыми сторонами АВ и СД.</span>
<span>Треугольники АВД и АСД, как объясняют в школе равны по 1-му признаку равенства треугольников.</span>
<span>А теперь забудем о трапеции. Как доказать, что треугольники АВД и АСД равны если известно, что АВ=СД, угол ВАД = углу СДА, а сторона АД у них общая?</span>
<span>Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны.</span>
Проведем через вершину сечение, перпендикулряное стороне основания. В нем построим треугольник, стороны которого - апофема d (высота боковой грани), высота пирамиды (перпендикуляр из S на основание, другой конец этого отрезка - центр квадрата в основании), и отрезок, соединяющий центр квадрата с серединой боковой стороны, он равен половине стороны основания а. Нам задана высота этого треугольника, проведенная к гипотенузе d, она равна 2. (Эта высота перпендикулярна 2 прямым в плоскости бокового ребра - апофеме и стороне основания, то есть - это перпендикуляр ко всей плоскости боковой грани.)
В этом треугольнике нам задан так же угол в 60 градусов.
Далее все очевидно
d*cos(60) = a/2; Sбок = 4*d*a/2 = 4*(a/2)^2/cos(60);
a/2 = 2/sin(60); (a/2)^2 = 4/(3/4) = 16/3;
Sбок = 2*4*16/3 = 128/3
площадь основания в 2 раза меньше (Sбок*cos(60)), это 64/3. А ВСЯ площадь поверхности будет 64.
Боковые стороны равны, то бишь или 6 или 4 см. То же и с основой.
1) Если боковые стороны равны 6 см, то основа равна 4 см. Это значит что периметр равен 6+6+4=16 см
2) Если боковые стороны равны 4 см, то основа будет 6 см. Значит периметр равен 4+4+6=14 см