проведём прямую через точку Д параллельную стороне АВ, которая пересекает сторону ВС в точке К. т.к. прямые АВ и ВЛ параллельны и ЕД, ВК секущие,
т.к. прямые ЕД и ВС параллельны и ЕВ, Дк секущие, то
ДЕВ+КДЕ=180
ЕВК+ВКД=180
ДЕВ+ЕВК=180
КДЕ+ВКД=180 =>
КДЕ=ЕВК , ВКД=ДЕВ
т.к ЕВК=КДЕ, то ВД - биссектриса ЕВК и КДЕ => ЕВД=ДВК=ВДЕ=ВДК
т.к. ЕВД=ВДК, то треугольник ЕВД - равнобедренный => ДЕ=ВЕ
ч.т.д.
Кут С гiпотенуза трикутника.
АВ - наклонная к обеим плоскостям. При этом основание перпендикуляра В1 из точки В на прямую пересечения плоскостей а и в - это проекция точки В на плоскость а. И - точно также - А1 - проекция точки А на в. Задано А1В1 = 12.
Ответ:
8 см; 10см
Объяснение:
Видимо треугольник равнобедренный.
(28 - 2 * 2 )\ 3 = 8 см -основание
8 + 2 = 10 см - каждая из боковых сторон