В окружности радиус, которого равен 42 см, вписан правильный шестиугольник. Найдите его периметр.
=============================================================
<h3>Бо'льшие диагонали правильного шестиугольника разбивают её на 6 равных правильных треугольников</h3><h3>Сторона правильного шестиугольника равна радиусу описанной окружности ⇒</h3><h3>Значит, Р = 6•АВ = 6•R = 6•42 = 252 см</h3><h3><u><em>ОТВЕТ: Р = 252 см</em></u></h3><h3><u><em /></u></h3>
110/2=55
а в ромбе они равны
Если у описанного треугольника гипотенуза является диаметром окружности, то такой треугольник прямоугольный. Угол А=90°. Треугольник АОС равнобедренный (ОА и ОС - радиусы). Угол О - вершина равнобедренного треугольника = 96°. Углы при основании равны ⇒
искомый угол =(180-96)/2=42°.