140°. Розв'язання завдання додаю
Опустим из точки O на диагональ AC перпендикуляр OO'. При этом из теоремы о трех перпендикулярах (перпендикуляр SA к плоскости (ABC), наклонная SO', прямая OO' перпендикулярная AO') следует, что отрезок OO' перпендикулярен наклонной SO'. Тогда искомым углом будет угол , обозначим его меру буквой .
Из прямоугольного треугольника (угол равен 90 градусов по-доказанному) найдем :
-----(1)
В свою очередь найдем из прямоугольного треугольника ( угол градусов, что следует из определения прямой перпендикулярной плоскости) по теореме Пифагора:
------(2)
где по условию
Из прямоугольного треугольника найдем
длину перпендикуляра :
--------(3)
И, наконец, подставим в (1) вместо и выражения (2) и (3), получим:
Расчет:
А значит угол градусов
S= 16× 15×18=4,320
это третье задание
P= (8+5) × 2= 26
это второе