Т.к. AB = BC, то треугольник ABC - равнобедренный с основанием AC.
Рассмотрим треугольники BAD и BCE. У них:
AB = BC - по условию;
AD = CE - по условию;
угол BAD = углу BCE - т.к. в р/б треугольники углы при основании равны.
Т.к. у равных треугольников соответственные стороны равны, то BD = BE, что и требовалось доказать.
1.Т.к DB перпендикулярно плоскости (Abc), то оно перпендикулярно всем прямым лежащим в этой плоскости,значит DB перпендикулярно AC, AM перпендикулярно BM, значит АС перпендикулярно плоскости (BDM)
2.По теорема известно, что если 2 пересекающиеся прямые плоскости перпендикулярны какой-либо прямой, то все прямые этой плоскости(и сама плоскость) перпендикулярно прямой.
3.Все по той же теореме, что и во 2 задаче.
4.тоже самое, что и в 1 задаче
5.Опять по теореме из 3 задачи
6.из 1 задачи
Против наибольшей стороны лежит наибольший угол. Соответственно, против стороны АС лежит наибольший угол. Удачи!
Легко, три рази по 60 градусів в трикутнику бути не може, тк трикутник дорівнює 180 градусами.