<EAB=150 - внешний угол треугольника АВО =>
=> <EAB=<AOB+<ABO
<AOB=90, т.к. АВСD- ромб и AC и BD -диагонали ромба (взаимно перпендикулярны)
<ABO=<CDO=x, т.к. треуг. АВО=треуг.ВСО, т.е. у них равны соответственные углы
<BAO=<EAO-<EAB=180-150=30
<BAO=<BCO=y=30, т.к. треуг. АВО=треуг.ВСО, т.е.<span> у них равны соответственные углы</span>
2) BF-высота =>в<span> треугольнике AFB: <AFB=90, BF=4 см, <A=60 =>
</span>x=<AB)=90-30=60
Ответ: х=60, у=30
<span>Инструкция</span>
1
Если в градусную меру нужно перевести величину угла в радианах, исходите из того, что одному градусу соответствует число радиан, равное 1/180 доле числа Пи. Эта математическая константа имеет бесконечное число знаков после запятой, поэтому и коэффициент перевода из радиан в градусы тоже является бесконечной десятичной дробью. Это означает, что абсолютно точного значения в формате десятичной дроби получить не получится, поэтому коэффициент перевода нужно округлить. Например, при точности в одну миллиардную долю единицы расчетный коэффициент будет равен 0,017453293. После округления до нужного числа знаков, разделите на этот коэффициент исходное число радиан, и вы получите градусную меру угла.
2
При решении математических задач из разделов, относящихся к геометрии, часто встречаются формулы, в которых величины углов выражены не радианами, а долями числа Пи. Если вы получите решение, содержащее эту константу, для перевода его в градусы замените π числом 180. Например, если центральный угол определен выражением π/4, это означает, что его градусная мера равна 180°/4=45°.
3
Углы могут быть выражены и единицами, которые имеют название «оборот». Такая единица соответствует 360°, поэтому проблем с пересчетом возникнуть не должно. Например, если в задании говорится об угле в полтора оборота, это соответствует 360*1,5=540° в градусном измерении.
4
Иногда в геометрических задачах упоминается развернутый угол. Она образуется двумя лучами противоположного направления, то есть лежащими на одной прямой. Используйте число 180 для выражения величины развернутого угла в градусах.
5
В геодезии, картографии, астрономии градусы делятся на еще более мелкие единицы, которые имеют собственные названия - минуты и секунды. Это деление имеет корни там же, где и градусы, поэтому каждый градус включает в себя 60 минут или 3600 секунд. Используйте эти числа, если секунды и минуты надо заменить десятыми долями градуса. Например, углу в 11°14'22" соответствует десятичная дробь, приблизительно равная 11 + 14/60 + 22/3600 ≈ 11,2394°.
Если <BOK-<KOC=48° (1), то так как <BOK+<KOC=<BOC=160° (2), то
сложив (1) и (2), получим 2*<BOK=208°. Тогда
ответ: <BOK=104°.
Но если разница углов <KOC-<BOK=48°, то <KOC=104°, а
<BOK=160°-104°=56° и
ответ: <BOK=56°