Сумма углов треугольника равна 180 градусам, значит угол С=180-34-34=112 градусов.
Достроим сечение параллелепипеда до параллелограмма ВМD₁Ф
Его основание ФВ найдём по Пифагору
ФВ² = 8²+6² = 100
ФВ = 10
С высотой сечения так просто не справиться.
ЩС - перпендикуляр к ФВ
ЮС₁ - перпендикуляр к MD₁
Площадь ΔФСВ двумя способами
S(ФСВ) = 1/2*ФС*СВ = 1/2*ФВ*ЩС
6*8 = 10*ЩС
ЩС = 48/10 = 4,8
ΔD₁C₁Ю пропорционален ΔФЩС
ЮС₁/ЩС = D₁C₁/ФС
ЮС₁ = ЩС*D₁C₁/ФС = 4,8*11/6 = 8,8
ЮЖ = 8,8-4,8 = 4
ЮЩ² = ЮЖ²+ЩЖ² = 4² + 12² = 16+144 = 160
ЮЩ = √160 = 4√10
И финальный аккорд
S(ВМD₁Ф) = ФВ*ЮЩ = 10*4√10 = 40√10
Решение:
1) По условию задачи один из острых углов прямоугольного треугольника равен 60°, тогда второй острый угол равен 30°.
2) По теореме в прямоугольном треугольнике напротив угла в 30° лежит катет, равный половине гипотенузы, тогда в нашем треугольнике такой катет имеет длину 8см : 2 = 4 см.
3) Найдём неизвестный катет по теореме Пифагора:
Если АВ = 8 см, АС = 4 см, то ВС =
(см)
4) Площадь прямоугольного треугольника равна половине произведения его катетов, тогда
(cм²).
Ответ:
см².
Ответ у Вас верный..60 °)
А теперь по сути. Площадь ортогнальной проекции многоугольника на плоскость равна произведению его площади на косинус угла между плоскостью многоугольника и плоскостью проекции.
Находим по формуле Герона площадь треуг. АВС. полупериметр равен р=(6+25+29)/2=30, р-а=30-6=24; р-в=30-25=5; р-с=30-29=1
S=√(30*24*5*1)=60
30=60*Cosα отсюда Cosα=1/2, тогда α=60°
Ответ 60°
применение теоремы Пифагора
рассмотрим треугольник ABD
он прямоугольный так как AD перпенд. AB(по условию они все попарно перпенд.)
AВ из него равно=
из треугольника ABC
AC=
и из треугольника ACD
CD=
Ответ: CD=15