1+а - представим в виде суммы кубов
1+а=(1+a^1/3)(1- a^1/3+a^2/3)
После сокращения второго множителя и знаменателя,получим
1+a^1/3
1+a^1/3-2a^1/6=1-2a^1/6+(a^1/6)^2=
(1-a^1/6)^2
ну и в редакторе так
1) ∫cosxdx=sinx( c подстановкой от π/6 до 5π/6)=sin5π/6-sinπ/6=1/2-1/2=0
2) ∫sinxdx=-cosx(с подст. от π/3 до 2π/3)= -cos2π/3+cosπ/3=
= -cos(π-π/3)+cosπ/3=cosπ/3+cosπ/3=2*1/2=1
3) ∫¹(5x⁴+6x²)dx=(x⁵+2x³) |¹=(1+2)-[ (-1)⁵+2(-1)³] = 3-[-1-2]=6 (подстановка от (-1) до 1)
4)∫¹(4x³+6x)dx=(x⁴+3x²)|¹=1+3-((-2)⁴+3*(-2)²)=4-[16+12]=-24 (подстан. от (-2) до 1)
5)∫₀sin²x/2dx=1/2*∫₀(1-cosx)dx=1/2(x-sinx)|₀=1/2(π/2-sinπ/2)=1/2*π/2=π/4 (подстановка от 0 до π/2, sinπ/2=0
6)Преобразуем x³+x²+x+1=x²(x+1)+(x+1)=(x+1)(x²+1) Сократятся (х+1), останется (х²+1).
∫₀¹(x²+1)dx=(x³/3+x)|₀¹=1/3+1=4/3
7) x²-5x+6=(x-2)(x-3) Сократятся (х-2), останется (х-3)
∫₃⁵(x-3)dx=(x²/2-3x)|₃⁵=(25/2-15)-(9/2-9)=-2,5-(-4,5)=2
8)∫cos²x/4dx=1/2*∫(1+cosx/2)dx=1/2*(x+2sinx/2) [с подстан. от π/2 до π/2]=0, Если пределы одинаковые, то определённый интеграл =0. Можно бвло не находить первообразную( не буду её стирать, чтоб вы увидели, какая первообразная)
A.(ab-8a)-(bx-8x)=
=a(b-8)-x(b-8)=
(a-x)(b-8)
б.(ax+x)-(y+ay)=
=x(a+1)-y(a+1)=
(x-y)(a+1)
Вроде так)))))))))))))
1)log1/4(2x+5)>=-2
ОДЗ: 2x+5>0; 2x>-5; x> -2,5
Решаем неравенство:
log1/4(2x+5) >= log1/4(16)
2x+5<=16
2x<=16-5
2x<=11
x<=5,5
С учетом ОДЗ получим: x e (-2,5; 5,5]
2)(lgx)^2-3lgx+2<0
ОДЗ: x>0
Решим неравенство: сделаем замену. Пусть lgx=t, тогда:
t^2-3t+2<0
t^2-3t+2=0
D=(-3)^2-4*1*2=1
t1=(3-1)/2=1
t2=(3+1)/2=2
_____+_______(1)_____-_____(2)_____+____
/////////////////////////
1<t<2
Делаем обратную замену:
lgx>1 lgx<2
lgx>lg10 lgx<lg100
x>10 x<100
_______(10)____________
///////////////////////////
_______________(100)______
//////////////////////////////////
Ответ:x e (10; 100)
<u>3^9*4^9 </u> = <u>3*4^3 </u>=<u /> <u>3*2^3*2^3</u> = 3<u>
</u>3^8*2^6*4^6 2^6 2^6