Tg A = 3/4 - уже ясно, что это египетский треугольник
это значит BC:AC:AB = 3:4:5
тогда cos B = BC/AB = 3/5
решение
tg A = BC/AC = 3/4 = 3x/4x
тогда
AB^2 = BC^2 + AC^2
AB^2 = (3x)^2 +(4x)^2 = 25x^2 = (5x)^2
AB = 5x
cos B = BC/AB = 3x/5x = 3/5
1)Так как диаметры одной окружности всегда равны, а точка О является их центром, значит МО = ОN, РО=ОК. 2) Углы МОК и РОN - вертикальные, значит, они равны. Из всего этого следует, что два этих треугольника равны( по первому признаку равенства треугольников). 3) Угол N и угол М - накрест лежащие при прямых MK и PN. А так как треугольники МОК и PON равны, значит и все их углы равны, то есть накрест лежащие углы равны.
Следовательно MK||PN
ЧЕРТЕЖ ВО ВЛОЖЕНОМ ФАЙЛЕ (ПОМЕЧЕН)
Углы ВАМ и ВСМ<span>опираются на диаметр окружности и потому - прямые и равны 90°.</span>
Точкой пересечения хорды и диаметра радиус ВО делится на равные части. Поэтому в треугольнике ВАС <span>угол ВАС равен углу ВСА</span> и равен 30 градусам.
Отсюда угол АВС равен 120°, а угол АМС =60°.
Дуги<span>ВСМ и ВАМ равны по 180</span>°.
Дуга <span>ВАС</span> равна 120°, так как центральный угол, опирающийся на нее, равен 120° градусов, а вписанный АМС=60°.
Дуга<span> АВМ</span> вписанного угла АВС=120*2=240°.
Итак:
Углы
ВАМ и ВСМ=90°
АВС=120°
АМС=60°
Дуги
АВС=240°
ВАМ=АСМ=180°
АМС=120°
Не уверенна но мне кажется что верны утверждения номер четыре и номер 2.
<span>Высота равноудалена от вершин треугольника. Потому, что все боковые ребра образуют с высотой одинаковые углы, и поэтому равны по длине. Это вообще касается любого отрезка из данной точки, имеющего заданный угол с перпендикуляром к плоскости, проходящим через эту точку. Иначе говоря, вершина пирамиды проектируется на центр описанной окружности. Причем раз нам задан угол (45 градусов) и высота, то радиус описанной окружности равен высоте, то есть 16.Теперь нам надо сосчитать площадь равнобедренного треугольника с углом 120 градусов, вписанного в окружность радиуса 16.Можно,конечно, сосчитать тупо все длины, а можно сообразить, что вместе с радиусами, проведенными в концы основания треугольник образует ромб, (как бы составленный из 2 равносторонних треугольников, хотя даже это не обязательно - можно просто сказать, что центральные углы сторон получаются по 60 градусов). Поэтому боковые стороны треугольника равны 16, а площадь S = 1/2*(16^2)*sin(120) = 64*корень(3)<span>
</span></span>