SΔABC=(AB*AC*sin<a)/2
SΔ=(2√2*9*sin135°)/2=9
SΔ=9 см²
( допустим, что АС - гипотенуза.)
1)Рассмотрим треугольник АFT.
AF=1/2 AB=3 см
AT=1/2 АС=5
По теореме Пифагора находим FT.
FT^2=АТ^2 - AF^2
FT^2= 25-9
FT=4
2)Находим площадь AFT.
Площадь= 1/2AF*FT= 1/2*3*4=6
Ответ: 6
А) Т.к пирамида правильная следовательно, в основании квадрат.
1: Найдем диагональ по формуле: d = <span>√2 * a.
d = 12</span><span>√2.
2: SO = 12</span><span>√2/2 = 6</span><span>√2.
</span>3: Найдем длинну бокового ребра SC по теореме Пифагора: c² = a² + b<span>².
</span>SC² = 8² + (6√2)<span>².
</span>SC = <span>√136.
</span><span>Б) Площадь поверхности состоит из 4 треугольников и квадрата:
1: S квадрата = 12</span><span>² = 144.
2: S треугольника:
1/2 a * h = 1/2 * 12 и на высоту треугольника которую найдем по теореме пифагора:
Высота: 10.
S = 60.
S поверхности = 60*4 + 144 = 384 см</span><span>².</span><span>
</span><span>
</span>
Такое "хулиганское" решение. Но - нормальное решение уже есть :)))
Известно, что в "египетском" треугольнике 3,4,5 радиус вписанной окружности равен (3 + 4 - 5)/2 = 1, и отрезки, на которые точка касания делит гипотенузу, равны 3 - 1 = 2 и 4 - 1 = 3. Легко видеть, что мы имеем треугольник, подобный "египетскому", размеры которого в два раза больше.
То есть задан треугольник со сторонами 6,8,10, и радиусом вписанной окружности 2. Площадь круга pi*4;
Меньшая высота соответствует большей стороне