Треугольник АВС, АВ=ВС, точки касания вписанной окружности боковых сторон: М на стороне АВ (ВМ/МА=2/3), Е на стороне ВС (ВЕ/ЕС=2/3), К на стороне АС. Пусть ВМ=х, тогда МА=3ВМ/2=3х/2.
По свойству касательных: ВМ=ВЕ=х, МА=АК=3х/2, ЕС=КС=3х/2. Т.к. АС=АК+КС=3х/2+3х/2=3х, 2=3х, х=2/3. Значит боковая сторона АВ=ВМ+МА=2/3+1=5/3. Периметр треугольника Р=5/3+5/3+2=16/3=5 1/3
Правильный ответ: 5 1/3.
Просто так ....ну я не зна
Можно сначала от 180º(суммы двух углов вместе) отнять разницу в градусах (здесь 56º),затем оставшееся поделить на 2 и только потом уже прибавить к одной половине 56º.Это будет больший угол.Ну и меньший тот,что останется от 2 половины.