Треугольник ABC-равнобедренный(т. к. AB=BC)
Сумма углов треугольника равна 180°
180°-144°=36°(сумма двух углов при основании)
В р/б треугольнике углы при основании равны(угол BAC=BCA), значит
36°:2=18° (угол BCA)
Ответ: 18°
Обозначим катет АС=х, катет ВС =у
По условию площадь треугольника АВС равна 48,
AC·BC=96
x·y=96 (*)
Через точку М проведены прямые, параллельные катетам. Получили два маленьких прямоугольных треугольника, с катетами 6 ; (у-3) и 3 ; (х-6)
Из подобия пропорция между сторонами
6: (х- 6)=(у-3):3
Умножаем крайние и средние члены пропорции
18=(х-6)(у-3)
18=ху-6у-3х+18
3х+6у=96
Учитывая (*)
ху=96
Получаем систему двух уравнений
х+2у=32
ху=96
Выразим х из первого уравнения и подставим во второе
х=32-2у
(32-2у)·у=96
2у²-32у+96=0
у²-16у+48=0
D=(-16)²-4·48=256-192=64
y=(16-8)/2=4 или у= (16+8)/2=8
х=24 или х=16
Ответ. катеты 4 и 24 или 8 и 16
у равностороннего треугольника три оси симметрии, проходящие через его вершины, это его биссектрисы. У прямоугольного треугольника, как и разностороннего, тупоугольного и остроугольного треугольников осей симметрии вообще нет, а у равнобедренного она одна.<span>А проверить это легко - просто представить линию, по которой его можно разрезать надвое так, чтобы получить два одинаковых треугольника.</span>