См рисунок во вложении
Последовательность действий такая:
1. Проводим луч ОА
2. Из точки О строим дугу D1 радиусом R
3. На пересечении D1 и ОА ставим точку В.
4. Из точки В таким же радиусом R проводим дугу D2. На пересечении D2 и D1 ставим точку С.
5. Из точки С таким же радиусом R проводим дугу D3. На пересечении D3 и D1 ставим точку Е.
6. Из точки Е радиусом R1 проводим дугу D5, а из точки С таким же радиусом дугу D4. На пересечении ставим точку F.
7. Проводим отрезок ОF, на его пересечении с дугой D1 ставим точку G.
8. Из точки G радиусом R2 проводим дугу D6, из точки C радиусом тем же R2 проводим дугу D7, на пересечении D6 и D7 ставим точку Н. Угол НОВ=75 градусов.
Потому что угол ВОС=60, угол СОЕ=60, а G0C=30 и HOC=15
Вектор AB = (0-3; -7-(-1); 3-0) = (-3; -6; 3);
вектор AD = (3-3; 2-(-1); 6-0) = (0; 3; 6);
вектор AC = (-2-3; 1-(-1); -1-0) = (-5; 2; -1);
(вектор АВ)*(вектор AD) = (-3; -6; 3)*(0; 3; 6) = -3*0 + (-6)*3 + 3*6 = 0;
То есть векторы AB и AD перпендикулярны, это значит, что
<BAD = 90°.
(вектор AB)*(вектор AC) = (-3; -6; 3)*(-5; 2; -1) = (-3)*(-5) + (-6)*2 + 3*(-1) =
= 15 - 12 - 3 = 15 - 15 = 0;
То есть векторы AB и AC перпендикулярны, а это значит, что
<BAC = 90°.
Таким образом получается, что прямая AB перпендикулярна двум различным прямым AD и AC, которые лежат в плоскости ADC. Поэтому по признаку перпендикулярности прямой и плоскости получаем, что
AB ⊥ пл. ADC, что означает, что AB перпедикулярна любой прямой, лежащей в плоскости ADC, то есть что искомый угол = 90°.
1) протилежні кути рівні
2)протилежні сторони рівні
3) сума протилежних кутів=180 градусів
4) протилежні сторони паралельні
5) діагоналі діляться між собою навпіл
Это задача на тему "Соотношения в прямоугольном треугольнике".
Квадрат высоты, опущенный на гипотенузу равен произведению отрезков,на которые эта высота разбивает гипотенузу.
Пусть отрезки, на которые высота разбивает гипотенузу, равны х и у,
тогда ху=8^2=64.
По условию, х-у=12
Решим систему уравнений:
-длина гипотенузы
Вложения.....................................