1) угол 2 = 56°
2) Б) k параллельно h
3) угол А = 70°
∆MPF=∆EPN, т. к MP=PN;EP=PF по условию,
угол MPF=угол EPN, как вертикальные.
угол FMP=угол ENP, как углы в равных треугольниках, лежащие против равных сторон. Но эти углы являются внутренними накрест лежащими для сторон MF и EN.
Следовательно EN параллельна MF
Пусть меньший катет х, тогда больший х+1, по теореме Пифагора составим уравнение
х^2+( х^2+1)^2=√61;
х^2 +х^2+2х+1-61=0; х^2+х-30=0; Д=1+4·30=121;
Х=5, тогда второй катет 6, tgα=5/6
1.В равнобокой трапеции АБСД, где АБ=ЦД=26, а БЦ=7 проведём высоту БК на основание АД. Тогда в треугольнике АБК, где угол К=90, а тангенс угла А = 2.4 имеем:
БК/АК=2.4 или БК=2.4*АК. По теореме Пифагора БК^2+АК^2=АБ^2.
Подставляя предыдущее равенствополучим:
(2.4*АК)^2+АК^2=АБ^2
или 6.76*АК^2=26^2=676
Отсюда
АК^2=100
АК=10.
2. Проведём высоту ЦМ на основание АД. Тогда в прямоугольнике КБЦМ КМ=БЦ=7. МД=АК=10, поскольку треугольник МЦД симметричен треугольнику КБА относительно прямой, проходящей через середины оснований равнобокой трапеции.
3. АД=АК+КМ+МД=10+7+10=27.
Найдем второй катет
√625-400=√225=15
S=1/2*20*15=150.