Объём куба найдем по формуле:
, где a = AD = DD1 - ребро куба.
OO1 = DD1 = 10 см.
Объем конуса найдем по формуле:
, где R - радиус основания конуса, а H - высота конуса, которая равна боковому ребру куба, то есть H = DD1 = 10.
Радиус основания конуса, вписанного в куб, равен:
, где a - ребро куба.
Найдем объем конуса:
Ответ: и
По теореме синусов:
Т.к. углы A и C острые, т.е. меньше π / 2, а функция синус на отрезке [0; π / 2] возрастающая, то из неравенства sin(C) > sin(A) следует, что и ∠C > ∠A.
∠1 = 180° - ∠A > 180 - ∠C = ∠2, что и требовалось доказать.
1)
Градусная мера полного угла равна 360*
Найдем град. меру данного нам угла:
360/3=120*
Угол в 120* тупой(больше 90*) отсюда следует, что нам дан тупоугольный треугольник.
2)
Сумма углов в любом треугольнике равна 180*
Определим на сколько частей ее разделили:
5+7+3=15 частей
найдем одну часть
180/15=12*
N=12*5=60*
B=12*3=36*
G=12*7=84*
3)
Сумма углов в любом треугольнике равна 180*
Угла при основании р.б равны
(180-77)/2=51.5* - угол напротив основания
4)
Сумма углов в любом треугольнике равна 180*
Угла при основании р.б равны
52*2= 104* - градусная мера обоих углов при основании
180-104=76* угол напротив основания
5)
Сумма углов в любом треугольнике равна 180*
С=180-32-60=88*
6)
Сумма острых углов в прямоугольном треугольнике равна 90*
90-81=9* - второй острый угол
7)
если в треугольнике есть тупой угол(больше 90*), то он тупоугольный
106*>90* - отсюда следует , что наш треугольник тупоугольный
Ответ:
7)70
8) вроде 60 но хз
9)чтобы доказать равенство BM и CN докажите равенство треугольников ABM и cdn треугольники равны равенства сторон a равняется c как углы в параллелограмме b1 равняется b2 как вертикальные углы m равняется n равняется 90 градусов
Диагонали перпендикулярны в ромбе, получаем прямоугольный треугольник.