АМБ прямоугольный треугольник. угл АБМ=180-90-60=30°
против угла 30° лежыт катет в два раза меньше чем гипотенуза. тогда АМ=6/2=3
в ромба все стороны равны, значит АД=6, МД=6-3=3
ВН делит сторону ДС наполовину, ДН=НС=6/2=3
МД+НД=3+3=6
См. рис. к задаче в приложении.
Пусть дан прямоугольник АВСD, диагонали которого пересекаются в точке М. АВ = 7 см, АС = 12 см. Найдем периметр ΔАВМ.
Диагонали прямоугольника равны , а т.к. прямоугольник - это также и параллелограмм, то диагонали точкой пересечения делятся пополам, т.е. АМ = МС = ВМ = МD = АС : 2 = 12 : 2 = 6 (см). Тогда периметр ΔАВМ равен:
Р(ΔАВМ) = АВ + АМ + ВМ = 7 + 6 + 6 = 19 (см)
Ответ: 19 см.
Допустим треугольник построен так, что угол А=90 градусов, тогда угол С=180-30-90=60 градусов.
Достроим наш треугольник до равностороннего: на прямой АС отложим отрезок АЕ, так, что он будет равен АС. Получим треугольник ЕВС, в котором АВ высота к стороне, которая делит сторону пополам, т.е. является еще и медианой(мы ее так построили). Она является так же и биссектрисой угла В в треугольнике ЕВС (это очевидно, т.к. треуг ЕВА=треуг АВС: АВ общая сторона, АЕ=АС по построению, а углы А между этими сторонами раны как смежные 180=90(из условия)+90(=180-90 из условия))
В треугольнике ЕВС угол С=60 градусов, угол В=60 градусов (т.к. АВ является биссектрисой, мы доказали это из равенства треугольников, то угол ЕВС=2Х30=60), значит угол Е=180-60-60=60 градусов, что означает, что ЕВС - равносторонний треугольник, т.е. ЕВ=ВС=СЕ, а СЕ=2ХАС по построению, т.е. СЕ=10Х2=20 см=ВС. Это ответ