1) Достроим треугольник до треугольника АСМ, добавив равный ему, где АВ=ВМ, СМ=АС. Тогда СМ=АМ=АС, и треугольник АСМ - равносторонний (т.к. АС=2 АВ).
Все углы равностороннего треугольника равны 60º
∠САВ=60º
АЕ- биссектриса, и ∠ САЕ=∠ЕАВ=∠АСЕ=30º , а ∠СВА=180º-(60º+30º)=90º
------------------------------
2) В равнобедренном треугольнике АЕС ( по условию)
проведем высоту ( медиану) ЕН.
АН=НС=АВ
В треугольниках ЕАН и ЕАВ
<span>∠НАЕ=∠ЕАВ по условию
</span>АН=АВ
сторона АЕ - общая
Треугольники НАЕ и ЕАВ равны по первому признаку.
<span>∠ ЕНА= ∠ЕНС=90º по построению
</span>Отсюда угол АВЕ=АНЕ=90º
Треугольник АВС - прямоугольный с прямым углом В
Сумма острых углов прямоугольного треугольника равна 90º
<span>∠ ЕАС=∠ЕСА ⇒
</span><span><span>Так как АЕ биссектриса </span>∠ВАС, то ∠ВАС=2∠АСВ
</span><span>∠ АСВ+∠САМ= 3 ∠ АСВ
</span><span>∠ АСВ=90º:3=30º
</span><span>∠ САВ=2∠<span>САВ=60º
-------------------------------
3)
</span></span><span> АЕ=СЕ, следовательно, треугольник АСЕ - равнобедренный, угол САЕ=АСЕ. Достроим треугольник АВС равным ему, где боковая сторона равна АС, а основание равно АВ.
Тогда в нем АЕ=ЕС, и ЕС является биссектрисой угла С.
В новом треугольнике биссектрисы точкой пересечения делятся на равные части ( считая от вершин).
АВ=1/2АС, а основание нового треугольника равно АС, боковые стороны тоже в нем равны.
Так как АС=2АВ, ∠ АСВ=30°, отсюда ∠ВАС=60°.
<em><u>Треугольник АВС - прямоугольный с прямым углом В.</u></em></span>
Сделав чертеж, получим BAF=FAD по условию биссектрисы, а значитBFA=FAD как углы на крест лежащие;
Значит имеем равнобедренные треугольники ABF и FCD, из чего сделаем вывод,что AB=BF=FC=6;Откуда ВС=12;
Значит периметр будет равен 2хАВ+2хВС=12+24=36;
Ответ: периметр равен 36
Считаем сколько белья без воды в процентах
Считаем сколько белья без воды в килограммах
Считаем сколько белья без воды стало в процентах после стирки
И считаем сколько все 100% мокрого белья весят в килограммах (проще пропорцией)
S= 1/2(a+b)×h=1/2×( 3+5)×4=1/2×8×4=16
Ответ: 16