Обозначим треугльник АВС(смотри рисунок). Проведём высоты АА1 и СС1. Треугольники АС1С и АА1С прямоугольные и гипотенуза АС у них общая. Известно, что центр О описанной окружности лежит на середине гипоенузы. В данном случае нам важно то, что вокруг указанных треугольников может быть описана одна общая окружность, которая будет также описанной окружностью для четырёхугольника АС1А1С. А далее смотрим дуги и углы на которые они опираются. Вписанные углы опирающиеся на одну и ту же дугу равны. Например угол ВКА=углу ВСА=бетта. Поскольку они опираются на дугу АМВ, далее в решени приводятся равные углы и дуги на которые они опираются . Затем из прямоугольных треугольников МВС1 и ВА1К находим значения углов Х и У, подставляем и получаем угол ВА1С1=альфа, угол ВС1А1=бетта.
Ответ:
66°
Объяснение:
Сумма двух острых углов в прямоугольном треугольнике равна 90°.
Значит, второй острый угол равен 90°-24°=66°
Изи.
Параллелограмм АВСД, АВ=10, АД=15, диагонали в параллелограмме в точке пересечения О делятся пополам, АО=ОС. ВО=ОД ,периметрАОД =АО+ОД+АД=
=АО+ОД+15, периметрАОВ=АО+ВО(ОД)+АВ=АО+ОД+10
периметрАОД - периметрАОВ = АО+ОД+15 - (АО + ОД+10) = 5