трегольник OLP прямоугольный, в нём OL перпендикуляр сечению, LP половина сечения, OP радиус
Имеем: OP=4
OL=3
LP=?
Находим по теореме пифагора:
m - сечение
m=LP*2=2√7
S=2√7*12=24√7 cm²
Ответ: 24√7 см²
<ABD=180°-85°-30°=65°.
<B=<ABD+<CBD=65°+65°=130°
Треугольник АВС равнобедренный (АВ=ВС - дано), значит <BCA=<BAC=(180°-130°):2=25°
Итак, BО (О - точка пересечения диагоналей) в треугольнике АВС биссектриса, высота и медиана. Следовательно, диагональ BD перпендикулярна диагонали АС. Но если в треугольнике ADC DO - высота и медиана (АО=ОС - доказано выше), то он равнобедренный и <ACD=<CAD=60°, а <C=25°+60°=85°. Тогда <CDO=30° и <D=30°+30°=60°.
Ответ: <A=85°, <B=130°, <C=85° и <D=60°
Отношение угла АBC к углу АМО=3 к 1
Например угол АBC=90 градусов угол АМО=30 градусам
Надо доказать равенство треугольников АВМ и АСМ (по трем сторонам).
Из равенства треугольников следует равенство их соответственных элементов, в частности, равенство углов АМВ и АМС.
Угол BMD = 180 градусов - угол АМВ (углы BMD и АМВ - смежные). Угол CMD = 180 градусов - угол АМС (углы CMD и АМС - смежные).
Так как угол АМВ = углу АМС, то угол BMD = углу CMD, что и требовалось доказать.