<СВК = <АКВ как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей ВК. Но<CBK=<ABK, т. к. ВК - биссектриса угла В. Значит<AKB=<ABK, и треугольник АВК - равнобедренный (углы при его основании ВК равны). АК=АВ=6, AD=6+2=8. ТогдаP ABCD = 2AB+2AD=2*6+2*8=28
Олдродь
Одороддооетбб. Ллл
1 = 2 накрест лежащие
1 + 3 = 180 смежные
3 = 2 соответственные
4 = 2 накрест лежащие
1. AD - биссектриса.По Т. о биссектрисе. (Биссектриса треугольника делит противоположную сторону на части, пропорциональные прилежащим сторонам) АВ/АС= ВD/DС.<span>2. Пусть ВD=х, тогда DС= 20-х => 14/21= х/(20-х) => 14(20-x)=21x => 280-14x=21x => </span><span>=> 35Х=280 => х=8 => ВD=8</span>3. 20-8= 12 => DС=12<span>Ответ: ВD=8; DС=12</span>
1) Рассмотрим треугольник АОС и треугольник BOD: АО=ОВ, ОС=ОД - поскольку т. О - середина отрезков АВ иСД, Угол АОС= углу ВОД - как вертикальные.
Треугольник АОС = треугольнику BOD - по двум сторонам и углу между ними.
2) Из равенства треугольников следует равенство соответствующих углов:
угол АОС=углу ОДВ=20°,
По свойству углов треугольника: угол САО=180°-(115°+20°)=45°