Следовательно, подходит первый вариант ответа: C{7;-12}
<span>Прямые СС</span>₁<span> и ВD</span>₁<span> - скрещивающиеся.
Расстоянием между ними будет расстояние между СС</span>₁<span> и плоскостью, проходящей через прямую ВD1 параллельно прямой СС</span>₁<span>.
<em>Расстояние между прямой и плоскостью - это длина перпендикуляра от этой прямой до плоскости.
</em>АС и ВD - диагонали основания куба, О - точка их пересечения.
ВDD</span>₁<span>В</span>₁<span> - плоскость, в которой расположена прямая ВD</span>₁<span>. Так как любая точка прямой, параллельной плоскости, находится на одинаковом расстоянии от нее, найдем СО, которое равно МО</span>₁<span>.
Основание куба - квадрат, его диагонали пересекаются под прямым углом и точкой пересечения делятся пополам.
Треугольник СОВ - прямоугольный равнобедренный.
СО=ОВ.
СО=СВ*sin 45</span>°<span> (можно по т.Пифагора вычислить длину СО)
<span>СО=2√2*(<span>√2):2=2 (ед.длины)</span></span></span>
∠DBA - вписанный, значит дуга AD=35*2 =70°.
Дуга ADBC равна 180°⇒дугаDBC= 180-70=110°.
Угол DAC- вписанный, он равен 110/2 = 55°.
Пусть Е - точка пересечения касательных. Согласно теореме о касательных, проведенных к окружности из одной точки, АЕ = ЕВ. Значит. треугольник АЕВ равнобедренный, и угол ЕВА равен (180 - 64)/2 = 58 градусов.
Согласно теореме о касательной, радиус, проведенный в точку касания, всегда перпендикулярен касательной. Значит, угол ОВЕ равен 90 градусов.
Искомый угол АВО равен разности углов ОВЕ и ЕВА: 90 - 58 = 32 градуса.
Ответ: 32 градуса.
Площадь боковой поверхности призмы равна произведению периметра основания на высоту призмы.
V = 4· 9cм · 5см = 180см²