Если в основании пирамиды прямоугольный треугольник и боковые рёбра имеют равный наклон к плоскости основания, то отсюда следует:
- высота пирамиды совпадает с высотой вертикальной боковой грани по гипотенузе,
- проекции боковых рёбер равны половине гипотенузы основания или меньшему катету.
Меньший катет равен 30*tg30° = 30*(1/√3) см.
Тогда высота H пирамиды равна:
H = (30*(1/√3))*tg60° =( 30*(1/√3))*√3) = 30 см.
Площадь квадрата равна: a^2 = 46^2=2116 вроде так но как то простовато, так что извини если не правильно.
Ответ:
Объяснение:
угол ДАС=АСВ (по условию)
Угол ВАС = ДСА ( по условию)
сторона АС -общая.
Значит треугольники ВАС= АДС по второму признаку( по стороне и двум прилежащим к ней углам)
Дано.
прямая a
A∉a
C∉a
B∈a
D∈a
AB и CD перпендикуляры к a
Док-ть: угол ABD=углу CDB
Найти: угол ABC, если угол ADB=44⁰
Док-во:
Рассмотрим угол ABD. A∉a, B∈a, D∈a и AB перпендикуляр ⇒ угол ABD = 90⁰
Рассмотрим угол CDB. C∉a, B∈a, D∈a и CD перпендикуляр ⇒ угол CDB = 90⁰
Значит угол ABD = углу CDB = 90⁰ ч.т.д.
Решение:
угол ABC = угол ABD + угол DBC
угол ADB = углу DBC = 44⁰ - накрест лежащие
угол ABC = 90⁰+44⁰ = 134⁰