уголВМА=180-128=52градуса (т.к. смежный с углом ВМД)
Выполним построения: из точки К к прямой а проведем две наклонные АК и ВК. Расстояние от точки К до прямой а обозначим КС. Образовались два прямоугольных треугольника, у которых катет КС будет общий.
Пусть меньшая наклонная равна <span>х
</span>тогда большая наклонная будет х+2. Составим два уравнения для вычисления катета КС.
Для треугольника АКС:
КС^2=x^2-25.
Для треугольника ВКС:
KC^2=(x+2)^2-81.
Приравняем правые части полученных уравнений:
x^2-25=(x+2)^2-81
4х=52,
х=13.
АК= 13, ВК= 13+2=15.
Ответ: 13; 15.
KH=4, BH=12
BT - высота и биссектриса в равнобедренном треугольнике,
∠KBH=∠B/2
KH/BH =tg(∠B/2) =4/12=1/3
CH/BH =tg(∠B)
tg(∠B)= 2tg(∠B/2)/(1-tg^2(∠B/2)) =2/3 : 8/9 =3/4
(CK+KH)/BH =3/4 <=> CK= BH *3/4 -KH =12*3/4 -4 =5
S(CKB)= CK*BH/2 =5*12/2 =30
ИЛИ
BK^2=BH^2+KH^2 =12^2 +4^2 =160
∠BKH=∠CKT (вертикальные), ∠KBH=∠CBT (BT - высота и биссектриса в равнобедренном треугольнике)
△BHK~△CTK~△BTC (прямоугольные, по острому углу)
BH/KH =CT/KT =BT/CT =12/4 =3
KT=x, CT=3x, BT=9x
BK=BT-KT=9x-x=8x
CT=BK*3/8
<span>S(BKC)= BK*CT/2 =BK^2 *3/16 =160*3/16 =30</span>